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J. Phys. A: Math. Gen., 13 (1980) 701-711. Printed in Great Britain 

On the gauge dependence of spectral functions? 

R Delbourgo and B W Keck 
Physics Department, University of Tasmania, Hobart, Tasmania, Australia 

Received 28 March 1979 

Abstract. An integral relation is derived between charged source spectral functions in 
photon gauges differing by longitudinal terms ak ,k , /k4 .  The a dependences of the spectral 
and Green functions supplied by the gauge technique automatically satisfy these integral 
relations. 

1. Introduction 

The relations between Green functions in different Lorentz covariant gauges were 
obtained many years ago (Landau and Khalatnikov 1956, Fradkin 1956) and 
subsequently rederived by functional (Zumino 1960, Bialynicki-Birula 1960) and 
other (Okubo 1960) methods. These relations serve to connect the charged particle 
Green functions for photon propagators D,,(x) differing by the longitudinal term 
d , d M  and they were effectively used by Johnson and Zumino (1959) and Zumino 
(1960) to highlight the gauge dependence of the renormalisation constants as well as the 
infrared and ultraviolet behaviours of the electron propagator. The connection 
between the Green functions involves the phase factor exp(ie2M(x)), and, as such, is 
most easily expressed in configuration space. In this paper we wish to discuss the gauge 
dependence of the charged propagator spectral function p ;  since this is couched in 
momentum space the relationship cannot be expected to remain so simple. For the class 
of covariant gauges where D,,(k) varies by ak,k , /k4 ,  

exp[ i e ’~ (x ) ]  = (- m * x  2)-e2a’16v2 

represents the multiplicative effect of the phase factor. We shall determine (see 
equations (22) and (23)) the connection between p in two different a gauges and then 
demonstrate how the explicit p obtained (Delbourgo and West 1977a, b, Delbourgo 
1977) by means of the gauge technique (Salam 1963, Delbourgo 1979) automatically 
satisfy the identity. To expose this more transparently, we go on to find the cor- 
responding x space charged particle Green functions. 

A rapid derivation of the gauge relations is provided in § 2, as well as the 
corresponding steps for the non-abelian case and why they are not particularly fruitful. 
In § 3 we obtain the integral connection between the spectral functions and finally we 
study the repercussions for the gauge technique in § 4. 

f Supported by the ARGC under gran, no. B77/15249 
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2. Gauge dependence of Green functions 

Here we shall rapidly derive the gauge properties of amplitudes by functional methods. 
We shall treat the abelian case first and stick to Zumino’s (1960) notation. Further on, 
we shall discuss the generalisation to the non-abelian case and show that it fails to 
provide closed form relations that are of any use. 

In a gauget a,Aw = A  one begins with the vacuum functionals 

where B acts as an auxiliary multiplier field, enforcing the gauge condition. As a further 
extension, which for the Landau gauge amounts to an addition d,dM(x - y )  to the 
photon propagator Dwv(x - y), one may envisage 

ZA,,[u, u , J ] = ~  dA,. . sdB.rr+(u,)x$(~,)exp i (Y-J4-B(A-aA)-iBMB)] 

and assume without loss that d,aw = 1. 

variables A,  +, $ by an amount depending on B :  

(2) 
( 1  

The A, M dependence may be elucidated by gauge transforming the integration 

A, +A, - a d  ICl -j exp(iex)+ $+ exp(-ieX)aj; (3) 

Z A , M [ u ,  U, J] = J [dA, . . d B ] r  exp[ie(g + hB)(ui)]J/(ui).rr expf-ie(g + hB)(ui)]$(vj) 

and so 
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Expanding in J and suppressing A we find for the propagators and vertex function 

(10) D,Yb - Y ; M )  = D I I Y ( X  - y ; 0) - a , a M ( x  - Y 1 
s ( x - y ; ~ ) = e x p ( i e ~ ( ~ ( x - y ) - ~ ( ~ ) ) ] ~ ( x  - y ;  0) (11) 

{D,,sr"s}!X, y, z ; M )  = exp[ie2(M(x - y )  -M(o))][{D~~s~~s}(x, y, t ; 0) 

+ieS(x - - y ;  O)d:{M(x - z ) - M ( y  -z)}l (12) 
The above relations are for unrenormalised fields and expectation values. Since 
(Johnson and Zumino 1959) 

z ~ ( M ) / z ~ ( o )  = exp(-ie2M(0)) (13) 

one deduces the following relations between renormalised Green functions: 

Note that since 

M, = Zi'M,, e,(SrSD), = Z;'e,(SrSD), 2 2 er =&eu,  

the combinations e2M and erSD are renormalisation invariant. Indeed, consistent 
with the transformation properties (12), it is easily verified that the renormalised 
Dyson-Schwinger equation 

z ; ' ~ ( x ) =  (iy. a - m o ) ~ ( x ) + i e y , { ~ ~ , ~ ~ C " u } ( x ,  0, x) 
is valid for any fixed value of M, as we know it must be. 

with the Faddeev-Popov modified version of (2), 
Let us generalise from QED to QCD to see how the argument goes awry. We begin 

Z,,, =I [dA,. . .dB]A(A).ir+(u).r$(v)exp [I i (B-JA-B(A-aA)-fBMB)]. (14) 

The measure [dA]A(A) is invariant only under certain A-dependent transformations of 
Slavnov (1972) type, 

SA, = -D,&(A) = -D,(a . D)-'6h (15) 
where D is the normal covariant derivative and 8 A  is A independent. (The usual proof 
of this invariance (Lee and Zinn-Justin 1973) is perhaps rather complicated, so we 
thought it worthwhile to present a more transparent and general derivation in Appen- 
dix A). As for QED, SA can depend on B. We obtain 

Z,, -- [dA . . . dB]A(A)r exp(ieT6,y)$(u). .ir exp(-ieF6,y)d(v) 

x exp[ i (2 - J ( A  .- DSx) + B (aA - A 4- 6 A) - iBMB)] (16) 

as the direct analogue of ( 5 ) .  In (16), T is the generator in the fermion representation, 
and is one of the unpleasant complications over the abelian case. For one thing, the 
factors exp(ieT6x) and exp(-ieT6,y) are not phases, so cannot be combined with the rest 
of the expression as a change in A. For another, they depend in a complicated way on A,  
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so replacement of A by iS/SJ can only lead to relations involving infinite numbers of 
Green functions. In the absence of fermions the situation is hardly better due to the 6x 
term in the square brackets. The simplicity, even for infinitesimal transformations, is 
therefore lost in the non-abelian case, although the gauge-dependence of the scaling 
properties has been further investigated (Hosoya and Sat0 1974, Tarasov and Vladi- 
mirov 1977). 

3. Gauge dependence of spectral functions 

In view of our failure with QcD we restrict ourselves to QED hereafter. Recall that when 
the photon propagator is varied as 

D%(k)  = DL,(k) + k,kJf(k)  

S(X; M )  = exp(ie2M(x))S(x; 0) 

(10) 

(1 1') 

the renormalised propagators for different M values are connected by 

On the other hand, we know that the propagator admits the spectral decomposition 

where S(x 1 W) = (iy . a +  W)A(x 1 W2) is the free (mass W )  fermion propagator. This 
yields a complicated relation 

I p (  W; M)S(x 1 W) d W = exp(ie2M(x)) I p (  W; O)S(x I W) d W, 

between the corresponding spectral functions in the two gauges. It can be simplified 
somewhat by taking the discontinuity of the Fourier transform: 

- .rrp(p; M )  = Im I d Wp(  W; 0) I d4x exp(ip . x) exp(ie2M(x))S(x I W) (18) 

This is now an integral relation between the different p. 

covariant gauges 
To make further progress, the form of M needs to be specified. In the class of 

(19) 
one identifies M ( k )  = -a/k4 at a formal level. Let us use dimensional regularisation to 
give meaning to exp[ie2M(x)], instead of introducing Pauli-Villars regulators as did 
Johnson and Zumino (1959). In 21 dimensions, we substitute e2(m2)2-1  for e 2  to 
maintain the coupling constant dimensionless, in being the electron mass. Hence, in the 
four-dimensional limit 

DWY(k)  =[-vFLY + k,k,(l - a)/k21/k2 

a 
d2'k exp(-ik. x ) ~  

1+2 I k 
e2M(x)-, -1im e2(m2)'-' 

= lim e2(m2)2-1a I -21 a a i  
d k exp(-ik . x)- - 7 

' + 2  4(1-2) ak& ak, k 
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where iD(x) = r(1- 1)(-x2 + iO)'-'/4.rr' is the causal massless propagator for arbitrary 1. 
Thus, up to an x independent constant factor, 

The abbreviation E = e2/16.rr2 has been used as it recurs throughout. 

transform 

\ d4x exp(ipx)(-m2x2)-"'(iy. 8 + W){-i WKl[ W ( - ~ ~ ) ' ' ~ ] / 4 . r r ~ ( - x ' ) ~ ' ~ }  

In order to discover the relation between p (  W; a )  and p (  W; 0), we shall need the 

Since the hypergeometric solution F(a,  p ;  y ;  z ) ,  regular at z = 0, has a branch point at 
z = 1 with a discontinuity given by 

Im{r(a)r(P)F(a,  P ;  Y; 211 

there follows the fundamental integral relation 

X[F(UE, 1+aE;2aE;  1-p2/W2) 

+ w - ' y .  pF(ac, 2 +U€; 2ae; 1 -p2/ W2)] 

between the spinor spectral functions. The connection is visibly non-trivial; nor is it 
more trivial in the companion scalar case, 

after one traces out the parallel argument. 

scalars (near p2  = m2) ,  the connection reads 
At asymptotic values the relations look more tractable. In the infrared limit, with 
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and with spinors (near y . p = m )  it reads, very similarly, 

If we assume that there are threshold singularities 

m2p(p2;  0)-(p2/m2-,  I)" and mp(p; 0) - (p /m  - 1 ) 1 1 / 2  

m2p(p2; a )  - ( p 2 / m 2 -  l ) t o + 2 a r  

m p ( p ;  a ) - ( l + y .  p/m)(p2/m2-1)' ' /2+2a' .  

in the Landau gauge (a  = 0), we readily arrive at the general infrared behaviours, 

(24) 

Likewise, in the ultraviolet domain ( p 2  >> m 2 )  for integrals dominated by the upper end 
point and the postulated asymptotic behaviour? 

m2p(p2;  0) -'I (p2/m2)"o 

m2p(p2;  a )  - b 2 / m  1 

m p ( p ;  0 ) -  (p2/m2)71/2 

we arrive, via a scaling of ( 2 2 )  and (23 ) ,  at the general ultraviolet characteristics 

m p ( p ;  a )  = (p2/m2)rll /2+ar.  ( 2 5 )  2 T o t a r  

The connecting formulae ( 2 2 )  and ( 2 3 )  do not, however, tell us what p is in a chosen 
gauge or what values the coefficients 7 and 5 take. To find these out one is obliged to 
turn to perturbation theory and the renormalisation group. In QED we know by infrared 
freedom that 

50 = l i / z  = -1 + 6~ 

which may be substituted in (26) to give the complete infrared answers for p or the 
Green functions. At  the other, high-energy extreme, if we suppose that the propagators$ 
are indeed governed by a dimension 7 as in (25 ) ,  then up to first order in e 2  a simple 
calculation based upon extraction of leading logarithms gives 

7 0  = 71/2  = -1 -3€  

From (25)  one can read off the ultraviolet behaviour in any covariant gauge a. The 
virtues of the Landau and Yennie gauges were emphasised long ago by Johnson and 
Zumino (1959). 

4. The gauge technique 

If we knew p (  W) for all W in a given a gauge, we could determine p and S in any other a 
gauge fairly easily. Unfortunately we do not know the full p (for, if we did, it would 
mean that we should have solved QED completely) except in some approximation. One 
such approximation is provided by the gauge technique which offers, at a first level, the 

t Strictly, we are considering the even part of p ( p ) ,  viz. p ( p )  + p ( - p ) ,  as this supplies the dominant behaviour 
(Atkinson and Slim 1979) of S at asymptotic values. 
t In so far as the propagators have the same p + 00 (and x + 0) behaviour as their spectral functions, the small 
distance limit is more easily discussed directly in configuration space from (11) and (20). 
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Landau gauge spectral functionst 

x - F ( - ~ E ,  - 3 6 ;  -66; 1 - W2/m2) K 
(27)  + F ( - ~ E ,  1 - 3 ~ ;  -6.5; 1 - W 2 / m 2 ) ]  

These can be substituted in (24)  and (25)  respectively to give us the p for a # 0. In the 
scalar case one is confronted by the integral 

-1+2as ( y  - 1 ) - 1 - 6 e  
- l + a e  ( x / y  - 1) F(UE, 1 + a € ;  2aE; 1 - x / y )  I,' dY 2(2a-6)E r ( 2 4  r ( - 6 ~ )  

x F ( - ~ E ,  1 - 3 ~ ; - 6 ~ ;  1 - y )  

wherein x = p 2 / m 2  and y = W2/m2. This is evaluated in Appendix B and the result is 
( W 2 / m 2 -  1 ) - 1 + ( 2 a - 6 ) 6  

F ( ( a  - 3 ) ~ ,  1 + (a  - 3 ) ~  ; (2a - 6 ) ~  ; 1 - W2/m 2)) 
I'((2a - 6 ) ~ )  m2p(W2;  a )  = 2 ( 2 c r - 6 ) ~  

which is precisely the answer supplied the gauge technique for any a. (In the spinor case 
the integral cannot be reduced to a simple 2Fl function$, and we shall not quote it.) We 
have thus verified that the gauge techniques p are entirely consistent with the gauge 
dependence (23)  expected on general grounds; this is reassuring if not especially 
surprising bearing in mind the gauge covariance of the technique. 

We can clear much of the mystery and avoid these contortions with hypergeometric 
functions if we go to x space. As an intermediate step, evaluate 

00 

A ( p ; O ) = l  dW2p(W2;O)/(p2-  W2) 
m z  

Thus 

iA(x; 0) = J dq q 2 J l [ q ( - ~ 2 ) " 2 ] A ( ( - q 2 ) 1 / 2 ;  0 ) / 4 1 ~ ~ ( - x ~ ) ~ / ~  
0 

t The normalisation factors, which are not provided by the technique, have been carefully introduced to give 
the correct free propagators as E -f 0 and to maintain their simple character in any gauge. Thus p + 
S( W 2 -  m 2 )  or S( W - m )  as the coupling vanishes. 
t Rather it leads to 4F3 functions, again in conformity with the differential equation for p (  W ;  a )  provided by 
the technique. 
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in the Landau gauge, according to the initial gauge approximation. Hence in other 
gauges, 

iA(x; a )  = (-m2x2)(3-""mKl[m(-x')1'2]/4.rr2(-x2)1'z. (31) 
The Yennie gauge a = 3 would thus have the free propagator as the starting function. 

Carrying out the same steps in the spinor case, we find (see also Khare and Kumar 
1978) 

~ ( p ;  0)=-2~ ' r ' ( 1+3~) [ (y .  ~ ) - ' ( F ( I + ~ E ,  1 + 3 ~ ;  1;p2/m2)-1)  

+ m - ' ( l + 3 ~ ) F ( 1 + 3 ~ ,  2 1 3 6 ;  2;p2/m2)]  (32) 
and therefore t ( r 2  = - x 2 )  

1 2 i ~  
+ T K o ( m r >  m r  exp(-3ie)Sa,l(imr))) (33) 

where S,+, is the Lommel function. In the limit as E + 0, because Sl&) = I, one verifies 
that (33), like (32), tends to the free-field propagator-a useful boundary condition to 
test the correctness of the expressions. Multiplication of (33) by (m2r2)--"' then 
provides the Green function for arbitrary a. We see that, unlike the scalar case, the 
spinor result is non-trivial no matter what a value is chosen. The reason why the scalar 
propagator (31) looks so simple for a = 3 is because the e' correction to the scalar 
spectral function happens to vanish for that gauge; this never happens in any gauge with 
spinors. 

This work sheds considerably light on the gauge technique, by the explicit demon- 
stration that the procedure respects the general relations (lo),  ( l l ) ,  etc and by the 
relatively simple nature of the configuration space propagators (31) and (33). Give the 
spectral functions (26) and (27) one may go on to construct the gauge-covariant Green 
functions (up to transverse parts) in x space by appropriate weighting: 

{sr,s)(xY, 2) = \ dWp(W)S(x - 2  I W)Y,S(Z - Y  I W) 

{sr,vs)(xY, z w )  = \ dWp(W)(S(x - 2  I W)YVS(Z - w I W)Y,S(W - Y  I W) 

+S(x  - w I W)y,S(w - 2  I W)Y"S(Z - y  I W)). 

i Some work is needed to pass from (32)  to (33) .  The intermediate steps involve the use of 

jOm rJl(qr)F(b,  b ;  1; $) = - T 2 ( b ) G : ( t r 2 m 2 i 0  1 b ) ;  

the identifications, via the Barnes-Millin representation of G, 

'"( 1 ) =-z-'G::(z 1 0 ) 
0 b b O b b  

and the integral 
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Naturally, these higher Green functions are no longer simple transcendental functions 
like (31) and (33), except in the limit of vanishing photon momentum, i.e. upon 
integration over photon location. 

Appendix A 

We wish to give what we believe is a fairly transparent proof of the invariance of 
l[dA]A(A) under transformations of Slavnov type, such as (15). The presence of 
space-time coordinates and indices is inessential; consider just a ‘manifold’ with 
coordinates Ai  (so in practice i = p, a, x )  and a ‘Lie group’ of transformations g with 
coordinates g, (in practice a = a, x )  preserving the measure [dA]. For infinitesimal 
transformations we write 

SAj = Din(A) . axa. 
We are interested in l pT[dA] f(A) for surfaces T transverse to the group action, 

where p T  is the measure on T obtained from the measure [dA] and a left invariant 
measure on the group. For invariant f we know that the integral is independent of T. In 
particular, if T is given by the gauge condition L,(A) = A,, then the integral can be 
written as 

cc. T[dAIf(A) = [dAIA‘(A)S(L(A) - A)f(A) 

where AL = det FL and Ftb is defined via the infinitesimal transformations of L, viz 

SL = F ~ .  sx or F a b  = (aL,/aAi)D,b. 
Now consider A-dependent transformations of the type 

A ’ =  or A = ga ,  (A’). 

Given a gauge function L define L’ by L’(A’) = L(A), and similarlyf’(A’) 
we know that 

f(A). Since 

IT cL ‘[~AMA) = J cL T ’ [ d ~ ’ ~ f ’ ( ~ ’ )  
T‘ 

where T and T’ are given by L, L’ = A, we may write 

[dA]AL(A)S(L(A) - A)f (A) = [dA‘]AL’(A’)S(L‘(A’) - A)f’(A‘). 

By integrating over A we can express this quite generally as 

and changing variable on the right-hand side to A, we find 

A ~ ( A )  = J ~ A ’ / ~ A ~ A ~ ’ ( A ’ ) .  

This establishes the invariance of [dA]AL(A), provided that A L  = AL, or FL’ = FL,  
which in its turn is satisfied if L’ and L differ by a gauge-invariant function. 

Consider now an infinitesimal A-dependent gauge transformation A’ = 
A + D ( A )  .8x(A). From the definition of FL and L, we see that L’(A’)+ 
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F L ( A )  . S , y ( A )  = L ( A ) .  Hence if we choose 

Sjy(A) = [FL(A)]-l  . S A  

where SA is gauge-invariant, we guarantee the invariance of the measure. In particular 
for the gauge fixing term a .  A = A ,  F = ( a .  D )  and we therefore require the A 
dependence of the transformations to be of Slavnov type, 

SA, = D,(a . D ) - l .  S A  

Appendix B 

We wish to prove that when a’ + b’ - c’ = b -a,  the integral 
1 

r (c )r (c ’ ) I=[  d t  (1-tz)~~”(l-r)“-’tc’-’F 
0 

equals 

I = F ( a  +a ’ ,  b + b’; c + c’; z)/T(c +c’). 

Integrals comparable with this can be found in standard texts dealing with hyper- 
geometric functions but none exactly having the above form. We shall therefore return 
to first principles for the proof. 

Substituting the series expansion of F, 

Z n + n ’  
=1 F(a+n,c’+n‘;c+c’+rz+n’;z ) (  

n,n’  r(c + c’+ + n’) 

Recalling the combinatorial formula 

r(A + rt)T(B - n )  - r ( A  + B)T(A - C + l)r(B - D + 1) ? r (C+ n ) r ( D  - n )  T(C +D - l)r(A + B  - C -  D + 2 )  
- 

we can reduce the integral to the double sum 
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Further simplification is possible because the n ‘ summation is Saalschutzian and one can 
make use of the identity 

? 
I ‘ ( A + n ) r ( B + n ) r ( C - A + r - n - B )  

r(c + n ) r ( 1 +  n ) r ( l  -t r - n )  

- r ( A ) r ( B ) r ( c - ~ - B ) r ( c - ~ + r ) r ( C - B + r )  
r(C - A)r (C  - B)r(C + r )T(  1 + r )  

- 

Recalling the condition a’ + b’ - c‘ + a = b, we obtain 

z r r ( a+b’+r ) r ( a+a i+ r )  - F ( a  + a‘, b + b’; c + c ’ ;  2) 
I = C  

I r(a + bt)r(a + a y y c  + c‘+ r ) r ( 1 +  r )  - r (c  + c’) 
which was to be proved. As far as we know, this is a new integral identity. 

substitution y = 1 + t ( x  - 1) there and the identifications 
Such an integral arises in the text in the formula succeeding equation (27). The 

U + U€,  b + 1 + u ~ ,  c + 2a6, 

U ’ +  -36,  b’+ 1 -36, c’+ - 6 ~  

bring it into the desired form and lead to the result (28). 
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